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Abstract We investigate the problem of using contact sensors to estimate the con-

figuration of an object during manipulation. Contact sensing is very discriminative

by nature and, therefore, the set of object configurations that activate a sensor con-

stitutes a lower-dimensional manifold in the configuration space of the object. This

causes conventional state estimation methods, such as particle filters, to perform

poorly during periods of contact. The manifold particle filter addresses this prob-

lem by sampling particles directly from the contact manifold.

When it exists, we can sample these particles from an analytic representation

of the contact manifold. We present two alternative sample-based contact manifold

representations that make no assumptions about the object-hand geometry: rejection

sampling and trajectory rollouts. We discuss theoretical considerations behind these

three representations and compare their performance in a suite of simulation exper-

iments. We show that all three representations enable the manifold particle filter to

outperform the conventional particle filter. Additionally, we show that the trajectory

rollout representation performs similarly to the analytic method despite the rollout

method’s relative simplicity.

1 Introduction

Humans effortlessly use their sense of touch to manipulate objects. Imagine grop-

ing around on a nightstand for a glass of water, or feeling around a cluttered kitchen

cabinet while searching for the salt shaker. Each of these tasks involves contact

manipulation during which we make persistent contact with the environment. Ob-

serving contact is critical during these tasks to localize objects during manipulation.

Armed with real-time observations from tactile sensors [Odhner et al., 2013, Ten-

zer et al., 2012, Fishel & Loeb, 2012], manipulators should also be able to estimate
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Fig. 1: HERB pushing a rectangular box across the table. The state x ∈ X is the

pose of the box relative to the hand. An action u ∈ U is a relative motion of the

hand. After taking action u, HERB receives an observation z ∈ Z indicating where

the object touched the hand.

the state of the manipulated object—a problem we formalize as the state estimation

for contact manipulation problem (Section 2).

Early work attempted to solve this problem by deriving analytical state estimators

and controllers to track and control the pose of an object from contact positions

based on simple models of physics [Jia & Erdmann, 1999]. However, these models

fail to accurately capture the reality of manipulation because there is a large amount

of uncertainty in both the object’s motion and the robot’s observations.

Other work has employed a Bayesian approach by using a particle filter to esti-

mate the pose [Zhang & Trinkle, 2012] and physical properties [Zhang et al., 2013]

of an object during manipulation. However, our prior work [Koval et al., 2013] re-

vealed that the conventional particle filter (CPF) performs poorly at real-time update

rates and suffers from a startling problem: the CPF systematically performs worse

as sensor resolution increases (Section 3).

This problem arises because contact sensing accurately discriminates between

contact and no-contact. Topologically, the set of states that are consistent with a

contact observation lies in the lower dimensional observable contact manifold em-

bedded in the configuration space of the object (Section 2). Particles sampled from

the state space during contact have low probability of being on the observable con-

tact manifold and, as a result, there is particle starvation in the vicinity of the true

state. The manifold particle filter (MPF) provides a principled way of solving this

problem by sampling particles directly from the observable contact manifold (Sec-

tion 4).

Applying the MPF to contact manipulation requires sampling particles from the

observable contact manifold [Koval et al., 2013]. When it exists, an analytic repre-

sentation (AM) of the manifold provides an exact and computationally efficient way

of sampling from the dual proposal distribution (Section 5). However, computing an

analytic representation of the contact manifold is not always possible.

We present (Section 6) two alternative sample-based contact manifold represen-

tations that make no assumptions about the object-hand geometry: rejection sam-

pling (RS) and trajectory rollouts (TR). The RS representation distributes samples

uniformly in the space surrounding the manifold, while the TR representation con-
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centrates many samples on the regions of the manifold that we are most likely to

encounter during execution.

Our results (Section 7) reveal the trade-offs between these representations. RS

performs the worst. By distributing samples uniformly everywhere, even in unlikely

regions, RS sparsely covers the observable contact manifold. Surprisingly, TR per-

forms nearly as well as AM. By focusing samples on likely regions, TR saturated

those regions at a resolution that was indistinguishable from the AM representation.

A key reason is that likely regions occupy only a small portion of the observable

contact manifold in our experiments, where the hand pushes straight towards the

object.

Our key takeaway is to exploit structure. By exploiting the manifold structure

of the contact state estimation problem, we are able to outperform the CPF. Fur-

thermore, by exploiting the geometry of the hand-object interaction with trajectory

rollouts, we are able to perform as well as the analytical method.

We are excited by our future directions. First, in generalizing state to include

material properties and shape, which would enable us to simultaneously estimate

shape and pose from contact. Second, in closing the loop between state estimation

and control to develop robust closed-loop policies for contact manipulation.

2 State Estimation for Contact Manipulation

Let x ∈ X be the state of a dynamical system which evolves over time under actions

u ∈U and produces observations z ∈ Z. The state estimation problem addresses the

computation of the belief state, a probability distribution over the current state xt

given the past history of actions u1:t and observations z1:t [Thrun et al., 2005]:

b(xt) = p(xt |z1:t ,u1:t). (1)

We focus on the state estimation for contact manipulation problem, where the

state is the pose x∈ X = SE(n) (Fig. 1-Left) of the manipulated object and an action

u ∈U (Fig. 1-Middle) is a relative motion of the hand. During contact, the object

moves according to the stochastic transition model p(xt |xt−1,ut) that encodes the

physics of the object’s motion in response to pushing action ut . The stochasticity of

the transition model may be due to unknown physical properties of the object (e.g.

friction coefficients), imperfections in the physics simulation, or error in executing

ut [Dogar & Srinivasa, 2010].

Contact sensors attached to the surface of the hand provide observations zt ∈ Z

(Fig. 1-Right) that indicate whether the object is touching the sensor. This is equiv-

alent to testing whether xt ∈ Xo, where Xo ⊆ X is the set of states where the object

is in contact with one or more sensors. While x ∈ Xo, zt may provide additional in-

formation about the configuration of the object through noisy measurement of its

contact with the hand. Both of these properties are combined into the stochastic ob-

servation model p(zt |xt ,ut) as the probability of state xt generating observation zt

after executing action ut .
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Fig. 2: Contact manifold Xc for a two-dimensional BarrettHand pushing a rectangu-

lar box. Each point x ∈ Xc corresponds to a configuration of the object x ∈ Xc that

is in non-penetrating contact with the hand and is uniquely colored by the active

contact sensors. Configurations that are in contact with multiple sensors are white.

The Contact Manifold. Contact manipulation poses a unique state estimation chal-

lenge because the state evolves on a lower-dimensional manifold embedded in X .

We can partition X into three parts depending upon the type of contact occurring

between the hand and the object: (1) penetrating contact Xpen, (2) non-penetrating

contact Xc, and (3) no contact X f ree. These three sets are defined by the interplay

between the geometry of the object and the geometry of the hand.

Let Ph ⊆ R
n be the geometry of the hand and Po(x)⊆ R

n be the geometry of the

object at configuration x ∈ X . The set of all object poses that are in collision with

the hand form the configuration space obstacle [Lozano-Pèrez, 1983]

Xobs = COo(Ph) = {x ∈ X : Ph∩Po(x) 6= /0}

of the hand in the object’s configuration space.

Any configuration in Xpen = int(Xobs) is invalid because the object penetrates the

hand. Conversely, any configuration in X f ree = X \Xobs is in free space where the

object is out of contact with the hand. Therefore, any valid object configuration that

is in contact with the hand must lie on the contact manifold Xc = Xobs \ int(Xobs).
Figure 2 shows the contact manifold for the BarrettHand pushing an elongated

rectangular box in X = SE(2). Topologically, the contact manifold is a torus in

SE(2) with the top and bottom edges of the θ -dimension identified. The manifold

is repeated twice along the θ -axis because the box exhibits rotational symmetry.

The Observable Contact Manifold. We know that x∈Xc during periods of contact.

However, our contact sensors may not be able to sense contact over the entire surface

of the hand. We will define the observable contact manifold Xo ⊆ Xc as the set of

object poses that are capable of generating contact observations z ∈ Zc.

Let Ps ⊆ Po \ int(Po) denote the surface of the hand that is instrumented with con-

tact sensors. The set of observable states Xs that could generate a contact observation
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is given by the configuration space obstacle

Xs = COo(Ps) = {x ∈ X : Ps∩Po(x) 6= /0}

of the sensors in the object’s configuration space. The observable contact manifold

Xo = Xs∩Xc consists of the set of valid object configurations that have high proba-

bility of generating a contact observation z ∈ Zc.

Figure 2 shows the contact manifold colored by which sensors are active at each

point. Any state in the large, dark orange region of the manifold are in contact

with—and, thus, are likely to activate—the left distal contact sensor. States in the

large white region of the manifold are simultaneously in contact with multiple sen-

sors.

Discriminative Observation Model. Contact sensors accurately discriminate be-

tween contact and no-contact. We call an observation model discriminative if we

can partition the set of observations Z into sets of contact Zc ⊆ Z and no-contact

Znc = Z \Zc observations such that there are few false-positive and false-negative in-

dications of contact. Therefore, a discriminative observation model satisfies Pr(z ∈
Zc|x ∈ Xo,u) > 1− ε during periods of contact and Pr(z ∈ Znc|x 6∈ Xo,u) > 1− ε
during no-contact. We otherwise make no assumptions about the ability of an ob-

servation to localize the object.

3 Conventional Particle Filter

The Bayes filter is the most general algorithm for filtering a belief state given a

sequence of actions and observations by recursively constructing b(xt) from b(xt−1)
using the update rule

b(xt) = η p(zt |xt ,ut)
∫

X
p(xt |xt−1,ut)b(xt−1)dxt−1 (2)

where η is a normalization factor. The terms p(zt |xt ,ut) and p(xt |xt−1,ut) are, re-

spectively, the observation and transition models. The recursion is initialized with

a prior belief b(x0) provided by task-specific knowledge or other sensors (e.g. an

object recognition system).

The particle filter [Thrun et al., 2005] is a non-parametric formulation of the

Bayes filter that represents the belief state b(xt) with a discrete set of samples. The

samples Xt = {x
[i]
t }

n
i=1 are called particles and are distributed according to the belief

state x
[i]
t ∼ b(xt). The particle filter implements the Bayesian update (Eq. 2) by re-

cursively constructing Xt from Xt−1 using a technique called importance sampling.

The conventional particle filter (CPF) is summarized in Algorithm 1. The key

insight behind this realization is that it is difficult to directly sample from the tar-

get distribution (Eq. 2), but it is relatively easy to sample from the transition model.

Therefore, we sample x
[i]
t from the proposal distribution

∫

X p(xt |xt−1,ut)b(xt−1)dxt−1

(line 3) by forward-simulating Xt−1 to Xt using the motion model. Next, we compute

an importance weight w
[i]
t = p(zt |xt ,ut) for each forward-simulated particle (line 4).
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Algorithm 1 CPF

Require: Xt−1, particles from time t−1
Ensure: Xt , particles sampled from b(xt)
1: Xt ← /0

2: for all x
[i]
t−1 ∈ Xt−1 do

3: x
[i]
t ∼ p(xt |x

[i]
t−1,ut)

4: w
[i]
t ← p(zt |x

[i]
t ,ut)

5: Xt ←{x
[i]
t }∪Xt

6: Xt ← Resample(Xt)

Algorithm 2 MPF

Require: Xt−1, particles from time t−1
Require: k, number of dual particles to sample
Ensure: X̄t , particles sampled from b(xt)
1: X̄Mi

← /0 for i = 1, . . . ,m
2: for 1, . . . ,k do
3: Mi ∼ Pr(xt ∈Mi)
4: if Mi 6= Mm then

5: x̄
[i]
t ∼ p(zt |Mi,xt ,ut)/p(zt |Mi,ut)

6: w̄
[i]
t ← EstimateDensity(Xt−1,ut , x̄

[i]
t )

7: X̄Mi
←{x̄

[i]
t }∪ X̄Mi

8: end if

9: X̄Mm ← CPF(Xt−1,ut ,zt)∩Mm

10: X̄t ← Resample(∑m
i=1 Pr(xt ∈Mi)X̄Mi

)

The importance weights result from dividing the target distribution by the pro-

posal distribution. As a result, the samples x
[i]
t , along with their importance weights

w
[i]
t , are distributed according to the target distribution b(xt) [Thrun et al., 2005].

Intuitively, the weighting step incorporates the observation model into the update

by assigning higher weight to particles that are consistent with zt .

The particle filter periodically resamples the set of weighted particles (line 6)

with replacement to distribute Xt according to the desired posterior b(xt). Frequent

resampling is necessary to prevent the weights from growing unbounded and degen-

erating over time [Thrun et al., 2005].

Particle Starvation During Contact. The particle filter, as described above, is ag-

nostic to the observation model and has been applied to a variety of application do-

mains [Montemerlo et al., 2003, Zhang & Trinkle, 2012]. However, contact sensors

are unique because they operate in two discrete states: contact and no contact. When

z ∈ Zc, the belief state has a singular component that is concentrated on the lower-

dimensional observable contact manifold. Conversely, when z ∈ Znc, p(zt |xt ,ut) is

uniform over free space and provides little useful information. This property makes

contact sensors fundamentally different than cameras and depth sensors, which have

relatively smooth observation models.

In practice, particle filters are updated in discrete steps. The execution of an ac-

tion concentrates any states that penetrate the hand onto the contact manifold. As a

result, the hand’s contact sensors gain full dimensionality and the CPF is not com-

pletely ineffective at estimating the state. However, the CPF requires a large number

of particles to increase the probability that some fall into the small swept volume of

each sensor [Koval et al., 2013]. As a result, the CPF suffers from particle starva-

tion during periods of contact: there are often no particles in the vicinity of the true

state.

Figure 3-Top shows an effect that particle starvation has on the post-contact per-

formance of the CPF. The conventional particle filter correctly filters the belief state

before contact in (a–b). However, after contact occurs, b(xt) becomes singular and
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importance sampling fails. As a result, the CPF converges to an erroneous belief

that the box rolling off of the finger tip instead of settling into the palm.

Surprisingly, this effect causes the particle filter to perform worse as sensor res-

olution or the update rate increases [Koval et al., 2013]. As sensor resolution in-

creases, the swept volume of each sensor becomes narrower. As the update rate in-

creases, the distance traveled by the hand between updates decreases, and the swept

volume becomes shorter. As a result, the CPF requires a large number of particles

to successfully track the state.

We have shown that the conventional particle filter is poorly suited for the contact

manipulation problem because the state evolves on a lower-dimensional manifold.

4 Manifold Particle Filter

Suppose the state space X is partitioned into m disjoint components M = {Mi}
m
i=1,

where M1, . . . ,Mm−1 ⊆ X are manifolds and Mm = X \∪m−1
i=1 Mi is the remaining free

space. The belief state b(x) may have a singular component with non-zero probabil-

ity concentrated on the lower-dimensional manifolds {Mi}
m−1
i=1 .

We redefine the belief state as the weighted sum

b(xt) = ∑
Mi∈M

b(xt |Mi)Pr(xt ∈Mi) (3)

over manifolds, where b(xt |Mi) is the belief over Mi given that xt ∈Mi.
1

The manifold particle filter (MPF), summarized in Algorithm 2, also represents

the belief using particles. For each particle, we first choose which manifold to sam-

ple from according to Mi ∼ Pr(xt ∈Mi). Then, we sample the particle x̄
[i]
t ∼ b(xt |Mi)

from the corresponding conditional belief using a sampling technique that is appro-

priate for the structure of Mi.

Ideally, we would compute Pr(xt ∈ Mi) by marginalizing over Mi. Unfortu-

nately, this is fundamentally impossible for two reasons. First, marginalizing re-

quires knowledge of b(xt), precisely the distribution that we are trying to estimate.

Second,
∫

Mi
b(xt)dxt = 0 because Mi is a measure zero set.

Instead, we approximate Pr(xt ∈Mi) using only the most recent observation

Pr(xt ∈Mi)≈
p(zt |Mi,ut)

p(zt |ut)
(4)

where p(zt |Mi,ut) is the probability that zt was generated by a an xi ∈ Mi and

p(zt |ut) =
∫

X p(zt |xt ,ut)dxt is the prior probability of receiving observation zt .

Equation (4) is a good approximation in the case where p(zt |xt ,ut) accurately dis-

criminates between the manifolds.

Finally, we sample a particle x̄
[i]
t according to the belief distribution over the

chosen manifold b(xt |Mi). Our key insight is that we can apply a different sampling

1 From this point forward we will use b(xt) as shorthand for the weighted sum in Eq. 3.
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technique for each Mi that is specifically designed to take advantage of the structure

of the manifold. For the manifolds {Mi}
m−1
i=1 , we sample from the dual proposal

distribution [Thrun et al., 2000] as described below. In the case of the free space Mm,

we sample x̄
[i]
t with the conventional technique and reject any x̄

[i]
t ∈ ∪

m−1
i=1 Mi. This

rejection sampling step is necessary to avoid biasing the estimate of b(xt) towards

the manifolds.

Dual Proposal Distribution. Importance sampling from the conventional proposal

distribution fails on Mi for i < m because they are lower-dimensional manifolds. In

this case, we will sample from the dual proposal distribution [Thrun et al., 2000]

x̄
[i]
t ∼ η

p(zt |Mi,xt ,ut)

p(zt |Mi,ut)
, (5)

where η is a normalization constant. We can find the corresponding importance

weights

w̄
[i]
t =

∫

Mi

p(x̄
[i]
t |xt−1,ut)b(xt−1|Mi)dxt−1. (6)

by dividing the target distribution (Eq. 2) by the proposal distribution (Eq. 5).

The conventional proposal distribution forward-predicts using the motion model

and computes importance weights using the observation model. Conversely, the

dual proposal distribution samples particles from the observation model and weights

them by how well they agree with the motion model. [Thrun et al., 2000].

Mixture Proposal Distribution. Just as how the conventional proposal distribu-

tion performs poorly with accurate sensors, the dual proposal distribution performs

poorly when there is observation noise [Thrun et al., 2000]. The MPF uses the dual

proposal distribution to sample from the manifolds and, as a result, shares the same

weakness.

We use a mixture proposal distribution [Thrun et al., 2000] to mitigate this effect

by combining both sampling techniques. Instead of sampling all of the particles

from the MPF, we sample n particles from the CPF and d particles from the MPF. We

then combine the two sets of particles with the weighted sum (1−φ)Xt +φ X̄t before

resampling. The mixing rate 0 ≤ φ ≤ 1 is a parameter that allows the algorithm to

smoothly transition from the CPF (φ = 0) to the MPF (φ = 1).

Intuitively, d = |X̄t | is the number of particles necessary to simultaneously cover

all of the manifolds and n = |Xt | is the number of additional particles necessary to

represent b(xt) in free space.

5 Manifold Particle Filter for Contact Manipulation

In this section, we will apply the MPF to the state estimation for contact manipula-

tion problem. To do so, we will define the observable contact manifold Xo and free

space X f ree as the relevant subsets of X . We also describe a technique for computing

the importance weights w
[i]
i using kernel density estimation [Rosenblatt et al., 1956].
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Fig. 3: Snapshots of the CPF and MPF during execution. Unlike the CPF, the MPF

avoids particle starvation by explicitly tracking the probability distribution on the

observable contact manifold Xo.

Figure 3 shows the performance of the MPF relative to the CPF. Before contact

(a–b), Pr(xt ∈ Xo) ≈ 0 and both filters update using the conventional proposal dis-

tribution. After contact (c–d), Pr(xt ∈ Xo)≈ 1 and the manifold particle filter begins

sampling from Xo. Sampling from the observable contact manifold allows the MPF

to accurately track the object’s pose during persistent contact.

Importance Sampling from the Contact Manifold. We must weight the sam-

ples drawn from the dual proposal distribution with their corresponding importance

weights w̄[i] =
∫

X p(xt |xt−1,ut)b(xt−1)dxt−1. Intuitively, this integrates our belief

state b(xt−1) prior to taking action ut into b(xt) [Thrun et al., 2000].

We evaluate w̄[i] by forward-simulating the previous set of particles Xt−1 to time

t by sampling from p(xt |xt−1,ut), then evaluating the density of the distribution at

x̄
[i]
t using a density estimation technique [Rosenblatt et al., 1956]. Ideally, we would

compute a density estimate over the manifold Xo. Unfortunately, while there has

been some work on density estimation on Riemannian manifolds [Pelletier, 2005],

it is difficult to apply these algorithms to the approximate and sample-based repre-

sentations of Xo described below. This is exacerbated by the fact that many of our

forward-simulated particles will not lie on Xo.

Instead, we use kernel density estimation [Rosenblatt et al., 1956] to approxi-

mate the probability density over X , then restrict the estimate to Xo ⊂ X . Figure 3

shows an example of the resulting density estimate over X f ree (Fig. 3-Middle) and
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(a) Rejection Sampling (b) Trajectory Rollouts (c) Analytic Representation

Fig. 4: Several approximate representations of the contact manifold. Representa-

tions (a) and (b) approximate Xo with discrete sets of samples. Representation (c)

computes an approximate, analytic representation Xo.

Xo (Fig. 3-Bottom) computed using Gaussian kernels with bandwidths selected by

Silverman’s rule of thumb [Silverman, 1981].

6 Representing the Contact Manifold

Implementing the manifold particle filter requires sampling particles from Xo with

probability proportional to their observation likelihood x
[i]
t ∼ η p(zt |xt ,ut)/p(zt |ut).

Sampling from this distribution requires maintaining a representation of the observ-

able contact manifold Xo.

We will discuss three possible representations of the contact manifold. Two of

these, the rejection sampling (Fig. 4a) and trajectory rollout (Fig. 4b) representa-

tions, approximate the continuous manifold Xo with large set of discrete samples.

The third technique (Fig. 4c) takes advantage of additional structure in geometry of

the problem to solve for an analytic representation of Xo.

Rejection Sampling. The most straightforward way of sampling from Xo ⊂ X

is through rejection sampling in the ambient space X . Rejection sampling itera-

tively samples candidate states x[i] ∼ uniform(X) until it finds a sample x[i] ∈ Xo

in the desired set. Using this technique, we can generate a large set of samples

X̃o = {x[i]}n
i=1 ⊂ Xo that densely cover Xo in a pre-computation step. At runtime,

we importance sample from the discrete set X̃o with w[i] = p(zt |xt ,ut)/p(zt |ut) as

importance weights.

Unfortunately, rejection sampling fails for the same reason as the conventional

particle filter: Xo is a measure-zero set and there is zero probability of successfully

sampling an x[i] ∈ Xo [Koval et al., 2013]. Instead, we rejection sample from the set

X̃ =
{

x ∈ X : minps∈Ps,po∈Po(x)||ps− po|| ≤ ε
}

of object configurations that are within distance ε ∈ R
+ of the hand. The set X̃o is a

reasonable approximation for Xo when ε is on the same order of magnitude as the



Manifold Representations for State Estimation in Contact Manipulation 11

numerical inaccuracies of the motion and observation models (e.g. simulation step

size).

Figure 4a shows Xo covered by a set of 10,000 rejection-sampled configurations

X̃o of the BarrettHand in contact with the rectangular box shown in Fig. 2. The

samples X̃o are not exactly on Xo and are distributed uniformly over the ambient

space X . This is, in most cases, an acceptable approximation for a true uniform

distribution over Xo.

Trajectory Rollouts. Rejection sampling attempts to densely cover all of Xo with

samples X̃o that are independent of the prior belief b(x0). As a result, many of the

samples generated by rejection sampling will be found in regions of Xo that remain

low probability during the entire duration of execution. We can exploit this structure

by concentrating more samples in the regions of Xo that we are likely to encounter

during execution.

We can generate samples X̃o that are biased towards these regions by performing

trajectory rollouts for a set of sampled beliefs. We begin by sampling a particle from

the prior x
[i]
0 ∼ b(x0). Next, we forward-simulate the particle for T steps using the

motion model x
[i]
t ∼ p(xt |xt−1,ut) with ut chosen according to our policy.2 Finally,

we add any x
[i]
t ∈ Xo to X̃o. This process repeats until |X̃o| reaches the desired size.

Figure 4b shows 10,000 samples taken from 3000 trajectory rollouts with a fixed

“move straight” action and b(x0) roughly centered in front of the hand. The tra-

jectory rollout technique achieves dense coverage of the reachable area of the state

space—which consists of the front of the hand with orientations consistent with

b(x0)—at the cost of sparse coverage of the rest of the manifold.

Unfortunately, the non-uniformity of our samples means that X̃o is biased towards

absorbing regions of the state space. We compensate for this bias through impor-

tance sampling: we assign each x[i] ∈ X̃o an importance weight w[i]= p(z|x,u)/[p(z|u)p̃(x)]
where p̃(x) is the density of X̃o at x. We estimate p̃(x) using a standard kernel den-

sity estimation technique [Rosenblatt et al., 1956] of X̃o and, thus, produce samples

that are uniformly distributed over the ambient space X .

Analytic Representation. In some special cases of hand-object geometry we can

compute an analytic representation of Xo. This is possible, for example, in the com-

mon case where Ph and Po are polygons in R
2 [Lozano-Pèrez, 1983] or polyhedra in

R
3 [LaValle, 2006].

Without loss of generality, we will consider polygonal objects in SE(2). In this

case, we can geometrically compute the C-obstacle Xobs(θ) for a fixed orientation

θ of the object as

Xobs(θ) = Ph⊕−Po ([0,0,θ ])

where A⊕B = {a+b : a ∈ A,b ∈ B} denotes the Minkowski sum of sets A and B.

Since Ph and Po(θ) are polygonal, Xobs(θ) is also polygonal and can be computed

via a convolution of Ph and Po(θ) [Wein, 2013]. The contact manifold Xc(θ) at

orientation θ simply consists of the perimeter of the polygon Xobs(θ). Figure 4c

shows several θ -isocontours of Xc superimposed over a high-resolution polyhedral

2 If the policy is not known, we sample u∼ uniform(U).
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approximation of the contact manifold. The same process can be repeated with Ph

and Ps to construct an analytic representation of Xo(θ).
Finally, we approximate the observable contact manifold as a union X̃o =∪θ∈Θ Xo(θ)

over a large, discrete set of orientations Θ .3 Discretizing θ approximates Xo with a

polyhedron X̃o that shares the same polygonal iso-contours at all θ ∈Θ .

Sampling an x[i] ∼ X̃o is possible by first sampling a θ ∈Θ , then uniformly sam-

pling an x[i] from our analytical representation of Xo(θ). Alternatively, one could

sample from an approximate, polyhedral representation of X̃o by interpolating be-

tween iso-contours. In both cases, the samples are correctly drawn uniformly with

respect to a measure defined over the lower-dimensional Xo.

7 Experiments and Results

We designed a set of simulation experiments to compare the MPF with the CPF for

the state estimation for contact manipulation problem, and to explore the differences

between the three representations of the contact manifold.

Based on the particle starvation problem, we hypothesize that

H1. The MPF will outperform the CPF after contact.

Among the three representations of the contact manifold, we expect the rejection

sampling (RS) representation to perform the worst due to its relatively sparse dis-

tribution of samples. The trajectory rollout (TR) representation solves this problem

by concentrating samples on the regions of the contact manifold that we are most

likely to encounter.

Therefore, we hypothesize:

H2. Trajectory rollouts will outperform rejection sampling.

H3. The analytic contact manifold will outperform rejection sampling.

However, we hypothesize that the analytic representation will outperform both

the RS and TR representations because it exactly represents the contact manifold:

H4. The analytic contact manifold will perform best.

Experimental Design. We implemented CPF, MPF-AM, MPF-RS, and MPF-TR in

a custom two-dimensional kinematic simulation environment with polygonal geom-

etry. Each experiment consisted of a simulated BarrettHand pushing a rectangular

box in a straight line at a speed of 1 cm/s for 50 cm. The initial belief state was set

to b(x0) = N (0,Σ) with Σ 1/2 = diag[5 cm,5 cm,20◦].

Motion Model. We simulated the motion of the object using a penetration-based qua-

sistatic physics simulator [Lynch et al., 1992] with a 1 mm step size. During each

3 Uniformly discretizing θ may miss critical events where the object first comes into or leaves
contact with the hand. If these events are important, it is possible to analytically solve for the
critical values of θ through careful analysis of the geometry [Farahat et al., 1995].
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Fig. 5: (a) Estimation error of the CPF and MPF. (b) Performance of MPF using

the rejection-sampled (RS), trajectory-rollout (TR), and analytical (AM) manifold

representations. In both cases, the data is aligned such that contact occurs at t = 0.

update, the finger-object coefficient of friction µ and the radius of the object’s pres-

sure distribution c were sampled from the Gaussian distributions µ ∼ N(0.5,0.22)
and c∼ N(0.05,0.012) truncated at µ,c > 0.

Observation Model. Binary observations were simulated for each of the hand’s sen-

sors by computing the intersection of the contact sensor with the object’s geometry.

Ground-truth observations were simulated by applying the same observation model

to a special “ground truth” particle sampled from b(x0).

Dependent Measure. We measure performance of the estimators by tracking the root

mean square error (RMSE) of the object’s position (Fig. 5a-Top) and orientation

(Fig. 5a-Bottom) over a large number of experiments

Conventional vs. Manifold Particle Filter (H1). Both the CPF and the MPF used

100 particles. The MPF used an analytic representation of the contact manifold and

a mixing rate of φ = 0.1
Figure 5a shows that—as expected—both filters behave similarly before contact

(t ≤ 0) and there not a significant difference in RMSE. After contact (t > 0), the

MPF quickly achieves 4.4 cm less RMSE than the CPF. These results support hy-

pothesis H1: the MPF achieves lower post-contact error than the CPF.

Contact Manifold Representation (H2–H4). We also compared the RMSE error

of the MPF using the rejection sampling (RS), trajectory rollouts (TR), and an ana-

lytic (AM) representations of the contact manifold. The RS representation consisted

of 10,000 samples that were held constant throughout all of the experiments. The

TR representation generated a different set 10,000 samples for each experiment by

collecting five samples each from 2000 trajectory rollouts. Finally, the AM repre-

sentation was implemented by sampling from polygonal iso-contours of Xo spaced

every 3◦ of angular resolution.
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Figure 5b shows that all three implementations of the MPF outperformed the

CPF. As expected, the AM and TR representations both outperformed the RS repre-

sentation, supporting hypotheses H2 and H3. This occurs because the RS represen-

tation attempts to sparsely cover the entire surface Xo with a relatively small number

of samples, while the TR representation densely covers the states that we are most

likely to reach.

Surprisingly, hypothesis H4 was not supported by the data: the AM representa-

tion did not achieve lower error than the TR representation. This occurred because

the TR representation was able to saturate the regions of Xo that we are likely to en-

counter during execution. By doing so, the TR representation achieves such dense

coverage of the relevant parts of that it is unlikely to fail at sampling from the dual

proposal distribution.
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Fig. 6: Percent of the time that the MPF succeeded at sampling from the dual pro-

posal distribution during contact. Sampling fails when all particles sampled from

the contact manifold have a low probability p(zt |xt ,ut) of generating zt .

Sampling Failures. Figure 6 supports our intuition that the relatively poor perfor-

mance of the RS representation is a result of it frequently failing to sample from the

dual proposal distribution. The TR and AM representations fail to sample from the

dual proposal distribution for only < 30% of updates. Conversely, the RS represen-

tation fails to sample > 70% of the time. When sampling fails, the MPF behaves

identically to the CPF and suffers from the same problem of particle starvation. As

a result, the RS representation performs relatively poorly compared to the RS and

TR representations in Fig. 5b.

8 Discussion and Future Work

In this section, we discuss how partial sensor coverage and different contact mani-

fold representations effect the manifold particle filter. Additionally, we discuss sev-

eral possible ways of addressing the limitations of the MPF in future work.
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Contact Manifold Representations. We discussed several possible implementa-

tions of the contact manifold that can be used to sample from the dual proposal

distribution: rejection sampling (RS), trajectory rollouts (TR), and an analytic rep-

resentation (AM). Each of these representations makes different assumptions about

the structure of the problem.

The RS and TR representations approximate Xo with a discrete set of pre-

computed samples X̃o. These techniques make no assumptions about the geome-

try of the problem and widely applicable. Both techniques outperform the CPF, but

MPF-TR outperforms MPF-RS. This occurs because the TR representation con-

centrates X̃o in the regions of the state space that we are most likely to see during

execution. As a result, sampling from the dual proposal distribution is less likely to

fail with TR than RS.

Unlike RS, the set of samples X̃o generated by TR are specific to b(x0) and cannot

be generalized between problem instances. Even worse, pre-computing X̃o requires

rolling out a large number of trajectories using the computationally expensive mo-

tion model. In summary, TR trades more pre-computation time for better online

performance.

When it exists, an analytic representation of the contact manifold provides an

exact representation of Xo. For polygonal geometry in SE(2), the analytic represen-

tation requires minimal pre-processing and could possibly be updated in real-time

as the geometry of the hand changes. Additionally, it is efficient to uniformly sample

states from Xo at runtime. Unlike the sample-based representations, these samples

will be distributed uniformly with respect to the measure over Xo instead of the

underlying space X . Finally, there is no chance of failing to sample from the dual

proposal distribution due to a sparsity of samples.

The Observability of Contact. Contact sensors frequently do not cover the en-

tire surface of a hand. For example, the proximal links of the BarrettHand are

not covered with tactile sensors and the SynTouch BioTac [Fishel & Loeb, 2012]

sensor only provides tactile sensing on the interior of the fingertip. Even the iHY

hand [Odhner et al., 2013], which tightly integrates TakkTile sensors [Tenzer et al.,

2012] into its mechanical design, does not cover the outside surface of the hand

with sensors. As a result, it is important to consider the effect that observability of

contact has on our state estimation ability.

The difference between “contact” and “observed contact” is captured in our def-

initions of the contact manifold Xc and the observable contact manifold Xo ⊆ Xc.

The geometry of the non-observable region of the contact manifold Xno = Xc \Xo

impacts the difficulty of the state estimation for contact manipulation problem. Ide-

ally, the transition model will quickly move states out of Xno into Xo by pushing

them into contact with a sensor. Any stable states in Xno, e.g. those that come to rest

against a flat surface, will accumulate belief during execution.

Contact with Multiple Objects. We implicitly assume that the hand can only con-

tact the object that we are manipulating. This may not be possible in highly clut-

tered environments where we must contact multiple objects to achieve the desired

task [Dogar et al., 2012]. In future work, we hope to explore methods of general-

izing the MPF to environments with multiple—both static and movable—objects.

We believe it is possible to do so through limited factoring of the belief state (e.g.

through Rao-Blackwellization) to avoid requiring exponentially more particles.
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Shape Uncertainty. We assume that the hand and object both have known geometry.

This is often not true when using compliant/under-actuated hands (e.g. the iHY

hand [Odhner et al., 2013]) or manipulating un-modeled objects. Small variations

of the object-hand geometry can cause large changes in the shape and topology

of the contact manifold. We hope to address this additional source of uncertainty in

future work by considering distributions over object and hand geometry. This would

in effect, create a “fuzzy” contact manifold that consists of the union of several

hypothesized contact manifolds.
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